- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Krista, Larisza_D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Detection and EUV Flare Tracking (DEFT) tool automatically identifies flare precursors in extreme ultraviolet (EUV) observations in a fast and consistent manner, with minimal computational overhead. DEFT currently uses GOES/SUVI 304 Å observations to detect, group, and flag sudden impulses that could be precursors to flares. In this study, we analyzed precursor signatures before 351 flares (150 C, 150 M, and 51 X class flares) that occurred from 2017 to date. Across these magnitudes, precursors were detected for 93% of the flares when using a 6 hr window before the flare start times. Using superposed epoch analysis, we found that elevated precursor activity tends to occur across all magnitude flares in the last 2 hr before the flares. The frequency of precursors gradually increases before M class flares but decreases for C class flares. We also found that in the last 20 minutes there is a significantly higher precursor frequency, pixel count, and power associated with M class flares than C class flares. We suggest that the observed EUV precursors are the observable signatures of small-scale magnetic reconnection events, and the consistently increasing frequency of precursor activity could indicate that the region is becoming increasingly unstable and reaching a critical stage that could result in flare initiation. Continuing research on EUV precursors is essential to better understand preflare processes that build and reduce magnetic instability prior to main-stage flares. The consistent and reliable detection and differentiation of EUV precursors could also complement and significantly improve current flare forecasting efforts.more » « less
An official website of the United States government
